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Abstract The Geodetic Observatory Wettzell features
three radio-telescopes dedicated to Geodesy: the 20-m
telescope Wz (internally called RTW — Ratioteleskop
Wettzell) has been in operation since 1984, and the
two 13.2-m TWIN telescopes. Wn (TWIN 1, called
“Wettzell North” by the IVS Coordinating Center) and
Ws (Wettzell South) are VGOS-capable and were in-
augurated in 2013. Wn is currently equipped with a tri-
band receiving system (S/X/Ka) and regularly partici-
pates in routine IVS operations. Ws is equipped with
a VGOS Elevenfeed and participates in the VGOS Pi-
lot Test phase. Together, these three telescopes form
a local triangle. The analysis software LEVIKA SBA
(Short Baseline Analysis) was developed at the Obser-
vatory for local VLBI data adjustment. It serves the
primary purpose of determining the relative positions
of the three telescopes from original VLBI data and
comparing these results with the local tie vectors from
the precision engineering network regularly surveyed
at Wettzell. In addition, the software was developed
as part of a quality management initiative, in order to
provide timely feedback to the engineers and opera-
tors regarding the health status of the overall system.
Since telescopes with substantially different receiving
systems are present at Wettzell, mixed-mode observa-
tions and analysis are of importance. This contribution
depicts the analysis software, its functional basics and
presents selected analysis results.
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1 Motivation

The three radio-telescopes Wz, Wn, and Ws at
Wettzell are surveyed regularly by terrestrial measure-
ment equipment. The antenna reference point of the
new TWIN telescopes Wn and Ws is not directly ac-
cessible and requires—though partly automatized—a
major effort. However, the ties (connection vectors)
between the telescopes can also be determined from
the VLBI observations, and these “local VLBI ties”
can be compared with the terrestrial ties.

The local VLBI correlator GOWL was installed at
Wettzell for this very purpose. Local data quality assur-
ance sessions require an a analysis software that is easy
to use in order to warrant a rapid feedback to the VLBI
engineers. Consequently, the development of a small,
but straightforward baseline adjustment tool was fos-
tered.

2 Equations & Observations

LEVIKA SBA processes VLBI group delay observa-
tions for any band separately. A geocentric formula-
tion [Campbell, 2000] of the equations is preferred and
fully sufficient for this purpose. The associated obser-
vation equation reads according to [Lu et al., 2014]:

TG = —% (bxcos(t)cos(5) —bysin(t)cos(0) +bzsin(5)>
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Fig. 1

LEVIKA SBA desktop screenshot. The short baseline analysis module of the LEVIKA software in support of local VLBI

correlation is flexible in terms of group delay processing since each frequency band can be analyzed independently. This desktop
shows three different setups for two different frequencies (X- and S-band). The baseline WETTADS to WETTZ13N is a zero baseline,

the others refer to baseline Wn (TWIN 1) — Wz (RTW).

where 7 is the group delay measurement, c is the
speed of light, b, , . are the baseline components (co-
ordinate vector) between the two telescopes, ¢ is the
hour angle, and § is the declination of the radio source.

Figure 1 portrays the LEVIKA SBA desktop view
displaying the different data sets analyzed during a lo-
cal 24-hour session. You can see both data collected at
X- (upper part) and S-band (lower part). The number of
available and healthy observations in X-band is higher
than in S-band (e.g., 661 group delays versus 556 de-
lays). The reason is that S-band observations suffer
from interference, yielding high correlation peaks on
local baselines due to spatial correlation of the interfer-
ence signatures. There is one exception: baseline WET-
TADS — WETTZI13N shows high numbers. This is a
zero baseline; i.e., both groups of measurements refer
to Wn/TWIN 1 and were sampled in parallel with a
DBBC?2 digital backend (refer to WETTZ13N) as well
as an ADS3000+ sampler (refer to WETTADS). En-
vironmental interference from mobile phone networks
and similar differences cancel out in that case.

It is worth mentioning the following notes on ob-
servations and reductions:

o The retarded baseline effect [Brouwer, 1985] is
compensated. It reaches significant values even
over baseline as short as those at Wettzell (in the
range of 100 m).

e Only group delays are currently processed in the
software. The analysis of phase delays sounds at-
tractive due to the high precision. However, our ex-
perience so far indicates that system-internal effects
still dominate the error budget so that a smaller
standard deviation of the observables will not lead
to an increased accuracy of the baseline compo-
nents.

e Delay rates were initially processed in the software.
Though this type of observation usually yields cen-
timeter precision of the baseline components in the
end, the residuals showed height fluctuations and
were difficult to interpret. It was therefore decided
to exclude delay rates from analysis, because the
added value in terms of quality feedback to the
VLBI engineers is not clear.
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Fig. 2 Various graphical outputs are supported by LEVIKA SBA. This screenshot portrays the maximum residuals per radio source
scanned (in metric units). The x-axis is the right ascension, the y-axis is the declination of the radio source. The data were derived
from a local WHISP experiment lasting 24 hours. All sources scheduled are actually shown in the image.

e Tropospheric propagation delays are accounted
for. The height difference between the reference
points of Wz (RTW) and Wn (TWIN 1) is only 3.4
m. Approximately 8 m of height difference map
into less than 3 mm of hydrostatic delay difference
in zenith direction [Saastamoinen, 1972]. Though
the hydrostatic delay effect is small, it is already at
a magnitude to induce systematic errors. We can
clearly see that the VLBI short baseline solutions
deteriorate slightly with respect to the height when
tropospheric corrections are disabled. Also note
that the delay error at an elevation of 5° is ten
times higher compared to zenith direction. In
default mode, the total delay is compensated using
a so-called “blind model”, i.e., tropospheric correc-
tion based on climatology, but properly accounting
for height reduction. Either the WAAS-model
[RTCA, 2009] can be used or the in-house model
TropGrid2 [Schueler, 2014]. Though TropGrid2
is considerably more sophisticated in terms of
parametrization and made of a database compris-

ing nine years of numerical weather model data, we
hardly observe any differences in the adjustment
results.

Figure 2 illustrates the (maximum) residuals for
a local 24-hour experiment in X-band. One and the
same radio source is usually scanned several times dur-
ing such a session. Only the maximum residual is dis-
played in this right ascension — declination view. Indi-
vidual residuals can be shown in an azimuth-elevation
view. Further graphical outputs comprise the outlier ra-
tio, the statistical redundancy of each observation, the
clock drift time series, and a histogram of the residuals.

3 Parameters

LEVIKA SBA can handle the following set of param-
eters:
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Fig. 3 Diagram of the master clock drift behavior. The software estimates piece-wise independent linear compensation functions
shown in brownish color. The dots indicate the associated clock residuals of each scan. The green line is the result of smoothing

(Chebychev polynomial).

e Baseline vector: Naturally speaking, the coordinate
components are the primary set of unknowns we are
interested in. However, it can also be justified to fix
them in case quality assurance is of primary con-
cern, since the terrestrial survey is very precise. In
that case, the user can constrain the coordinates in
the software (tight constraint = fixed as constants).

e Zenith tropospheric delay: Though applying a tro-
pospheric correction model is sufficient in the vast
majority of the cases, the software can estimate the
zenith delay difference between both telescopes.
The motivation to include this option stems from
the fact that the tropospheric wet delay features a
scale height of just 1.4 km compared to 8 km for the
pressure (hydrostatic delay). Consequently, subtle
variations of humidity between the two telescopes
might result in noticeable delay errors. However, as
mentioned just before, we have not yet observed
session results yielding clearly significant tropo-
spheric delay parameters. The tropospheric model

compensation is always enabled, i.e., only a resid-
ual tropospheric delay difference will be estimated.
e Clock drift: Clock drift compensation is carried out
using piece-wise linear functions. The resolution
(time span) and the exact start of each independent
linear function can be chosen by the user. The drift
can be disabled for common clock experiments.

All other input data such as radio source locations,
pole positions, and length-of-day information is in-
jected as tight constraints into the analysis.

Figure 3 shows the clock error drift during a 24-
hour session in units of picoseconds (x-axis is time in
format hh:mm UTC). The hydrogen maser is appar-
ently drifting over a bit less than 0.4 ns during that
period. The clock error scatter is well within small
bounds (though we wish to even reduce it further) and
can be compensated by linear drift functions well in
most cases (an exception can be seen around 06:11
UTO).
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4 Clock Jumps and Outlier Handling

Initially, the software had no handling of clock jumps,
because such events used to be extremely rare at
Wettzell at that time (2014 to 2017). The situation
worsened when we experimented with common clock
modes so that an interactive as well as an automatic
clock jump detection algorithm were implemented.
Effectively, clock jump handling only requires to adapt
the start times of the nearest clock drift compensation
function properly.

Several outlier detection and handling methods are
available. A minimum residual can be specified for
X- and S-band observations separately. The outlier de-
tector will only investigate residuals higher than this
threshold. A conventional outlier detector based on a
posteriori statistics is used [Pope, 1976]. This detector
is implemented as an iterative algorithm rejecting the
highest-probable outlier during each iteration. In ad-
dition, an “erazer” is usually activated. It deletes the
residuals exceeding a pre-defined threshold. Though
this type of outlier rejection should not be necessary
in theory, we observed one session that essentially re-
quired such an additional step to yield good results in
automatic processing mode, i.e., the outlier detector
failed to identify one remaining unhealthy observation.

5 Results and Outlook

A number of local experiments have been performed
at the local baseline Wn-Wz so far. The 3D distance
compares well to the local precision survey and
is at the sub-millimeter level on average. Further
details can be found in [Schueler et al., 2016] and
[Phogat et al., 2018]. However, note that deviations in
height can accumulate to few millimeters.

Development of the LEVIKA short baseline analy-
sis tool has been completed. A few outstanding points
comprise the network combination module taking the
temperature compensation into account.
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